Personel

Doç.Dr. ELÇİN GÖKMEN
Doç.Dr.
Elçin Gökmen
@ E-posta
egokmen@mu.edu.tr
Telefon
0252 211 5593

Kadro Bilgileri

Görev Birimi

Fen Fakültesi / Matematik Bölümü / Uygulamalı Matematik Abd

Kadro Birimi

Fen Fakültesi / Matematik Bölümü / Uygulamalı Matematik Abd

Öğrenim Bilgileri

Lisans

Eskişehir Osmangazi Üniversitesi Fen-Edebiyat Fakültesi Matematik Temmuz 2003

Yüksek Lisans

Muğla Üniversitesi Fen Bilimleri Enstitüsü OFMA Eğitimi Matematik Öğretmenliği Tezsiz Yüksek Lisans Eylül 2004
Muğla Üniversitesi Fen Fakültesi Matematik Eylül 2008

Doktora

Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri Enstitüsü Matematik 16.07.2014

Yayin Bilgileri

(A-1) SCIE veya SSCI kapsamındaki dergide yayımlanmış makale

1-) Gökmen Elçin, Işık Osman Raşit, 2022. A numerical method to solve fractional pantograph differential equations with residual error analysis. Mathematical Sciences
2-) Gökmen Elçin, 2021. A computational approach with residual error analysis for the fractional-order biological population model. Journal of Taibah University for Science
3-) Gökmen Elçin, Gürbüz Burcu, Sezer Mehmet, 2018. A numerical technique for solving functional integro-differential equations having variable bounds. Computational and Applied Mathematics
4-) Gökmen, E., Yüksel, G., Sezer, M., 2017. A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays.. Journal of Computational and Applied Mathmematics
5-) Gokmen, E., Isik, O.R., Sezer, M., 2015. Taylor collocation approach for delayed Lotka–Volterra predator–prey system. Applied Mathematics and Computation
6-) Esteves, S., Gökmen, E., Oliveira, J.J., 2013. Global exponential stability of nonautonomous neural network models with continuous distributed delays. Applied Mathematics and Computation

(A-4) ESCI, Scopus veya SPORT Discus kapsamındaki dergide yayımlanmış makale

1-) Gökmen Elçin, Işık Osman Raşit, 2024. An Efficient Numerical Scheme for Solving A Competitive Lotka-Volterra System with Two Discrete Delays. Computational Methods for Differential Equations
2-) Gökmen, E., Sezer, M., 2012. Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients. Ain Shams Engineering Journal

(A-5) Diğer uluslararası hakemli dergide yayımlanmış makale

1-) Gökmen, E., Sezer, M., 2015. Approximate Solution of a Model Describing Biological Species Living Together by Taylor Collocation Method. New Trends in Mathematical Sciences

(A-7) TR Dizin kapsamındaki dergide yayımlanmış makale

1-) Gökmen Elçin, Mavi Firdevs Tuba, 2021. SOME APPLICATIONS OF EXPONENTIAL AND LOGISTIC GROWTH MODELS IN BUSINESS AND ECONOMICS. Mugla Journal of Science and Technology
2-) Gökmen Elçin, Çelik Elçin, 2019. A numerical method for solving continuous population models for single and interacting species. Sakarya University Journal of Science
3-) Gökmen Elçin, Sezer Mehmet, 2019. A MODIFIED TAYLOR COLLOCATION METHOD FOR PANTOGRAPH TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH HYBRID PROPORTIONAL AND VARIABLE DELAYS. Mugla Journal of Science and Technology

(A-8) Diğer ulusal hakemli dergide yayımlanmış makale

1-) Gökmen, E., Sezer, M., 2013. Taylor collocation method for nonlinear system of second-order boundary value problems. Düzce University Journal of Science & Technology

(B-3) Uluslararası bilimsel/sanatsal toplantıda sözlü/poster şeklinde sunulan ve özet metni basılı/elektronik olarak yayımlanmış çalışma

1-) Gökmen Elçin, 2024. A Computational Algorithm for Solutions of System of Fractional Order Differential Equations . IFSCOM-E 2024 10TH IFS AND CONTEMPORARY MATHEMATICS AND ENGINEERING CONFERENCE
2-) Gökmen Elçin, Topaloğlu Burak, 2022. FRACTIONAL BERNSTEIN SERIES SOLUTION OF FRACTIONAL-ORDER DELAY DIFFERENTIAL EQUATIONS. International Conference on Artificial Intelligence and Applied Mathematics in Engineering 2022 (ICAIAME 2022)
3-) Gökmen Elçin, 2022. NUMERICAL SOLUTION OF FRACTIONAL PANTOGRAPH VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS VIA BERNSTEIN POLYNOMIALS. 8TH INTERNATIONAL IFS AND CONTEMPORARY MATHEMATICS CONFERENCE
4-) Gökmen Elçin, 2022. Morgan-Voyce Polynomial Approach For Fractional Riccati Differential Equations. 4th INTERNATIONAL EURASIAN CONFERENCE ON SCIENCE, ENGINEERING and TECHNOLOGY
5-) Gökmen Elçin, Elbir Ebru, 2021. BERNSTEIN SERIES APPROACH FOR NONLINEAR FINANCE SYSTEM WITH INPUT TIME DELAY. 5th INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES
6-) Gökmen Elçin, Işık Osman Raşit, 2021. A Numerical Solution for A Competitive Lotka-Volterra System with Two Discrete Delays. Ahi Evran International Conference on Scientific Research
7-) Gökmen Elçin, Mavi Firdevs Tuba, 2019. Tahminsel Model: Ekonomiye Bir Uygulaması. I. Uluslararası Harran Multidisipliner Çalışmalar Kongresi
8-) Gökmen Elçin, Sezer Mehmet, 2019. A Modified Taylor Collocation Method for Pantograph Type Functional Differential Equations with Hybrid Proportional and Variable Delays. I. Uluslararası Harran Multidisipliner Çalışmalar Kongresi
9-) Gökmen Elçin, Çelik Elçin, 2017. Taylor Polynomial Approach for Solving Continuous Population Models for Single and Interacting Species. INES II. International Academic Research Congress
10-) Gökmen, E., Sezer, M., 2013. Taylor Collocation Approach for Delayed Lotka-Volterra Predator-Prey System. Second International Eurasian Conference on Mathematical Science and Applications
11-) Gökmen, E., Sezer, M., 2012. Approximate Solution of a Model Describing Biological Species Living Together by Taylor Collocation Method. First İnternational Eurasian Conference on Mathematical Sciences and Applications

(B-5) Ulusal bilimsel/sanatsal toplantıda sözlü/poster olarak sunulan ve özet metni basılı/elektronik olarak yayımlanmış çalışma

1-) Atmaca, M., Gökmen, E., Paşalı Atmaca, S., 2007. Zaman Lojiğindeki Teoremlerin Lattice Teorisinde Yorumları Aynı mıdır? . XX. Ulusal Matematik Sempozyumu

(D-14) SCIE veya SSCI kapsamındaki dergilerde hakemlik

1-) International Journal of Biomathematics. 2016. Hakemlik Sayısı: 1
2-) Applied Mathematics and Computation. 2016. Hakemlik Sayısı: 1
3-) Applied Mathematics and Computation. 2015. Hakemlik Sayısı: 1
4-) Scientia Iranica International Journal of Science and Technology. 2013. Hakemlik Sayısı: 1
5-) IEEE Transactions on Neural Networks and Learning Systems. 1900. Hakemlik Sayısı: 1

(D-15) AHCI, ESCI, Scopus veya SPORT Discus kapsamındaki dergilerde hakemlik

1-) Journal of Applied Mathematics. 2014. Hakemlik Sayısı: 1
2-) Neural Computing and Applications (NCAA). 2014. Hakemlik Sayısı: 1
3-) Journal of Applied Mathematics. 2013. Hakemlik Sayısı: 1

(D-16) Diğer uluslararası hakemli dergilerde hakemlik

1-) Fundamental Journal of Mathematics and Applications. 2022. Hakemlik Sayısı: 1
2-) African Journal of Engineering Research. 2014. Hakemlik Sayısı: 1

(E-1) SCIE veya SSCI tarafından taranan ve %10’luk dilimde yer alan dergide yapılan atıf

1-) A numerical method to solve fractional pantograph differential equations with residual error analysis - Atıf Yılı: 2024 Atıf Sayısı: 1
2-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2022 Atıf Sayısı: 1
3-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2021 Atıf Sayısı: 1

(E-2) SCIE, SSCI veya AHCI tarafından taranan dergide yapılan atıf

1-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2024 Atıf Sayısı: 2
2-) A numerical technique for solving functional integro-differential equations having variable bounds - Atıf Yılı: 2024 Atıf Sayısı: 2
3-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2024 Atıf Sayısı: 1
4-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2024 Atıf Sayısı: 1
5-) A computational approach with residual error analysis for the fractional-order biological population model - Atıf Yılı: 2024 Atıf Sayısı: 2
6-) Approximate Solution of a Model Describing Biological Species Living Together by Taylor Collocation Method - Atıf Yılı: 2023 Atıf Sayısı: 1
7-) A computational approach with residual error analysis for the fractional-order biological population model - Atıf Yılı: 2023 Atıf Sayısı: 1
8-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2023 Atıf Sayısı: 1
9-) A numerical method for solving continuous population models for single and interacting species - Atıf Yılı: 2023 Atıf Sayısı: 1
10-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2023 Atıf Sayısı: 3
11-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2022 Atıf Sayısı: 1
12-) A numerical technique for solving functional integro-differential equations having variable bounds - Atıf Yılı: 2022 Atıf Sayısı: 2
13-) A computational approach with residual error analysis for the fractional-order biological population model - Atıf Yılı: 2022 Atıf Sayısı: 1
14-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2021 Atıf Sayısı: 1
15-) A computational approach with residual error analysis for the fractional-order biological population model - Atıf Yılı: 2021 Atıf Sayısı: 1
16-) Approximate Solution of a Model Describing Biological Species Living Together by Taylor Collocation Method - Atıf Yılı: 2021 Atıf Sayısı: 1
17-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2021 Atıf Sayısı: 3
18-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2020 Atıf Sayısı: 5
19-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2020 Atıf Sayısı: 2
20-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2020 Atıf Sayısı: 2
21-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2019 Atıf Sayısı: 1
22-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2019 Atıf Sayısı: 3
23-) Approximate Solution of a Model Describing Biological Species Living Together by Taylor Collocation Method - Atıf Yılı: 2019 Atıf Sayısı: 2
24-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2018 Atıf Sayısı: 1
25-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2018 Atıf Sayısı: 1
26-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2018 Atıf Sayısı: 1
27-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2018 Atıf Sayısı: 1
28-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2017 Atıf Sayısı: 2
29-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2017 Atıf Sayısı: 1
30-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2016 Atıf Sayısı: 3
31-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2016 Atıf Sayısı: 1
32-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2016 Atıf Sayısı: 1
33-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2015 Atıf Sayısı: 4
34-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2015 Atıf Sayısı: 2
35-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2014 Atıf Sayısı: 1

(E-3) ESCI, Scopus veya SPORT Discus kapsamındaki dergide yapılan atıf

1-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2024 Atıf Sayısı: 1
2-) A numerical technique for solving functional integro-differential equations having variable bounds - Atıf Yılı: 2024 Atıf Sayısı: 1
3-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2023 Atıf Sayısı: 1
4-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2023 Atıf Sayısı: 1
5-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2022 Atıf Sayısı: 2
6-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2020 Atıf Sayısı: 1
7-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2019 Atıf Sayısı: 2
8-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2019 Atıf Sayısı: 1
9-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2019 Atıf Sayısı: 1
10-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2017 Atıf Sayısı: 1
11-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2014 Atıf Sayısı: 1

(E-4) TR Dizin kapsamındaki dergide yapılan atıf

1-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2022 Atıf Sayısı: 1
2-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2021 Atıf Sayısı: 1
3-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2021 Atıf Sayısı: 2
4-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2019 Atıf Sayısı: 1
5-) A numerical approach for solving Volterra type functional integral equations with variable bounds and mixed delays. - Atıf Yılı: 2018 Atıf Sayısı: 1
6-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2017 Atıf Sayısı: 1
7-) Taylor collocation method for nonlinear system of second-order boundary value problems - Atıf Yılı: 2015 Atıf Sayısı: 1

(E-5) Diğer uluslararası hakemli dergide yapılan atıf

1-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2024 Atıf Sayısı: 1
2-) Taylor collocation approach for delayed Lotka–Volterra predator–prey system - Atıf Yılı: 2023 Atıf Sayısı: 1
3-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2017 Atıf Sayısı: 1
4-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2017 Atıf Sayısı: 1
5-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2016 Atıf Sayısı: 2
6-) Approximate Solution of a Model Describing Biological Species Living Together by Taylor Collocation Method - Atıf Yılı: 2016 Atıf Sayısı: 1
7-) Global exponential stability of nonautonomous neural network models with continuous distributed delays - Atıf Yılı: 2015 Atıf Sayısı: 1
8-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2015 Atıf Sayısı: 2
9-) Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients - Atıf Yılı: 2014 Atıf Sayısı: 1

(F-2) Yönetiminde tamamlanmış yüksek lisans tezleri

1-) Tez Adı: KESİRLİ MERTEBEDEN GECİKMELİ DİFERANSİYEL DENKLEMLER İÇİN BERNSTEİN SIRALAMA YÖNTEMİ. Konu: Kesirli diferansiyel denklem sistemleri için sayısal çözüm yöntemi. BURAK-TOPALOĞLU. 2023
2-) Tez Adı: VAN DER POL OSCİLATÖR PROBLEMİ VE NONLINEER FİNANS MODELİ İÇİN BERNSTEİN SERİ ÇÖZÜMLERİ ÜZERİNE. Konu: Matematik. EBRU-ELBİR. 2022
3-) Tez Adı: ÜSTEL BÜYÜME VE LOJİSTİK BÜYÜME MODELLERİNİN İŞLETME VE İKTİSATTAKİ BAZI UYGULAMALARI. Konu: Matematik. Firdevs Tuba-Mavi-Mavi. 2019
4-) Tez Adı: TEK TÜR VE BİRBİRİ İLE ETKİLEŞİMLİ POPÜLASYON MODELLERİNİN YAKLAŞIK ÇÖZÜMLERİ İÇİN TAYLOR MATRİS METODU. Konu: Matematik. Elçin -Çelik. 2018

(F-3) Lisansüstü/tıpta uzmanlık/sanatta yeterlik tez çalışmaları savunma sınavlarında jüri üyeliği

1-) Tez Adı: ZAMAN SERİSİ SINIFLANDIRMASI İÇİN DALGACIK DÖNÜŞÜMÜNE DAYALI YENİ BİR YAKLAŞIM. Konu: Zaman Serisi. Arzu -Fidan. 2024
2-) Tez Adı: AKIŞKAN AKIŞLARININ DİNAMİK MOD AYRIŞIMI . Konu: Akışkanlar Dinamiği. Mustafa Hicret-Yaman. 2023
3-) Tez Adı: Katı (Stiff) Problemler İçin Zaman Rahatlatma Terimi Eklenerek Elde Edilen Euler ve Düzeltilmiş Euler Yöntemlerinin Kararlılıklarının İncelenmesi. Konu: Nümerik Metod. Berna-Akyel. 2023
4-) Tez Adı: BAZI LİNEER OLMAYAN DİFERANSİYEL DENKLEMLERİN TAM ÇÖZÜMLERİ İÇİN METOTLAR. Konu: Nümerik Metod. Sara-MAGHSOUDI KHOUZANI. 2019
5-) Tez Adı: Lineer Zaman Rahatlama Terimli Basitleştirilmiş Manyetohidrodinamik Denklemlerin (BMHD) Cranck- Nicholson (CN) Metoduyla Çözümleri ve Nümerik Analizi. Konu: Nümerik Metod. Simge Kaçar-Eroğlu. 2019

(G-10) Tamamlanmış Bilimsel Araştırma Projelerinde (BAP) yürütücülük/koordinatörlük yapmak

1-) Proje Durum: Tamamlandı. Projedeki Görev: Yürütücü. Konu: . Proje Türü: Yükseköğretim Kurumları tarafından destekli bilimsel araştırma projesi. Gecikmeli Lotka-Volterra Av-Avcı Sistemi için Euler Matris Yaklaşımı. 2021-2023
2-) Proje Durum: Tamamlandı. Projedeki Görev: Yürütücü. Konu: . Proje Türü: ARAŞTIRMA PROJESİ. TEK TÜR VE BİRBİRİ İLE ETKİLEŞİMLİ POPÜLASYON MODELLERİNİN YAKLAŞIK ÇÖZÜMLERİ İÇİN TAYLOR MATRİS METODU. 2017-2018

(Ğ-1) Alanında uluslar arası bilimsel nitelikli ödül almak

1-) Tübitak - 2013
2-) Muğla Sıtkı Koçman Üniversitesi - 2011

(J-1) Akreditasyonu sağlamış bölümün akreditasyon çalışmalarında (resmi yazı ile) sürdürülen tanımlı görev

1-) Öğretim Üyelerince Verilen Derslerin Dosyalarını Takip Komisyonunda Görev. 2019

(L-10) Dekanlık/Müdürlük tarafından oluşturulan kurul ve komisyonlarda görev almak (her yıl için)

1-) Disiplin Soruşturması. . . 2022

Verdiği Dersler

MAT1805 2024-2025 Güz Öğrenim Öncesi Tanınan Dersler

Genel Matematik I

MAT1806 2024-2025 Güz Öğrenim Öncesi Tanınan Dersler

Genel Matematik II

MAT3504 2024-2025 Güz Öğrenim Öncesi Tanınan Dersler

Nümerik Analiz II

MAT3509 2024-2025 Güz Öğrenim Öncesi Tanınan Dersler

Matris Teorisi

MAT4003 2024-2025 Güz Öğrenim Öncesi Tanınan Dersler

Kısmi Diferensiyel Denklemler

MAT1805 2024-2025 Güz

Genel Matematik I

MAT3509 2024-2025 Güz

Matris Teorisi

MAT4003 2024-2025 Güz

Kısmi Diferensiyel Denklemler

MAT5552 2024-2025 Güz

Diferansiyel Denklemlerin Nümerik Çözümleri II

MAT1806 2023-2024 Bahar

Genel Matematik II

MAT2802 2023-2024 Bahar

Lineer Cebir

MAT3504 2023-2024 Bahar

Nümerik Analiz II

MAT5548 2023-2024 Bahar

Nümerik Analiz

MAT1805 2023-2024 Güz

Genel Matematik I

MAT2805 2023-2024 Güz

Diferansiyel Denklemler

MAT4003 2023-2024 Güz

Kısmi Diferensiyel Denklemler

MAT1806 2022-2023 Bahar

Genel Matematik II

MAT2006 2022-2023 Bahar

Diferensiyel Denklemler II

MAT2802 2022-2023 Bahar

Lineer Cebir

MAT1805 2022-2023 Güz

Genel Matematik I

MAT1823 2022-2023 Güz

Genel Matematik

MAT2005 2022-2023 Güz

Diferensiyel Denklemler I